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In the biosynthesis of vitamin 8in Escherichia colit? 5a, Ry=Rp=Ac
pyridoxol 5-phosphate4) is derived from two acyclic building
blocks, 1-deoxys-xylulose 5-phosphate (dXB) and 4-hydroxy- oo
L-threonine 4-phosphate (HTR) (Scheme 1). We have shown H,@
that the first step in this process involves the oxidative decar- IEOH L I%A + PO
boxylation of HTP by the NAD-dependent enzyme 4-hydroxy- Foxa, Pexs
threonine 4-phosphate dehydrogenase (P#tdAjive an unstable 3, axP ;: 2;:2;‘:;%3
intermediate tentatively identified as 3-hydroxy-1-aminoacetone

3-phosphate 2).* More recently, it was found that pyridoxol T )
phosphate synthasg (Pdxdatalyzes the condensgtion@ﬁvith . Fﬁ{;‘gg ﬂtﬁéﬁgrﬁgtﬁtézgéigogf ggﬂ&b)ﬁggggln;ﬁg;gg:tf%was
dXp (3) to 79“’8 pyrldoxol phosphate and 1 equiv of inorganic was formed. The yield of4 was comparable to that in a control
phosphaté.” The !’EE}CIIOI’I has &m(app) for dXP of 26.uM incubation in which dXP and HTP were mixed in the presence
and akey Of 4.2 mirr. The free alcohol, 1-deoxy-xylu|o§e, IS of both enzymes, PdxA and PdxJ. Furthermore, when the filtrate
not a substr_ate. Format_lo’n dfhas been postulated to involve containing2 from the PdxA-catalyzed reaction was incubated with
initial formation of a Schiff's base betwe@and3, followed by PdxJ, which had been preincubated with 43.4 mM EDTA in 23
a sequence of steps in which the key cyclization reaction is the - of’O 1 M Tris (pH 7.5), at room temperatLire for 5 min
result of nucleophilic attack of a transiently generated enol on ;" totél volume of 1 mL. with the formation af monitored at
the carbonyl carbon derived from the ketone moietf.0farious 37°C by UV at 324 nm;,’g no difference was observed in the
mechanistic proposals differ in the precise timing and mechanism rate of formation of4 con’npared to that in a parallel control in
suggested for the loss of _the phosphat_e group of tXPhe which the PdxJ had been preincubated in the absence of EDTA.
results here reported provide further evidence for the mode of 1 a56 reguits establish that the pyridoxol phosphate synthase
action Qf PdxA and_ of PdX‘J.’ and provide insight into the reaction does not require a metal ion, in contrast to the HTP
mEChamsm qf formation of pyridoxol fphosphate4), based on dehydrogenase reaction which requires a divalent cation such as
the origin of its oxygen atoms. Mn2+.8 When PdxJ was incubated for 24 h at room temperature
Our previous experiments had indicated ®athe product of i, stgichiometric quantities of dXP, the substrate was recovered
the PdxA-catalyzed reaction, serves as the substra}e for py”doxmunchanged, indicating that pyridoxol phosphate synthase does not
phosphate synthase_ (PdR#)To demonstrate un_equwocally Fhat catalyze a partial reaction of dXP in the absence of the cosubstrate
deA4:?1nd PdxJ act |ndependently,°HTI) (Nas. |ncupated with 2. Treatment of a mixture of dXP and PdxJ with Naf&HN or
PdxA*in the presence of NADat 37°C for 5 min, using lactate NaBH, gave unchanged synthase, as indicated by ESMS analysis

dehydrogenase and pyruvate to recycle NADH. These conditions ¢ ooy ered protein, thereby ruling out the formation of a Schiff's
were sufficient to consume all the starting HTP. Protein was then - <o intermediate betwe&mand the protein, PdxJ

t Brown University. The mechanism by which the inorganic phosphate is cleaved
§ McMaster University. from dXP in the course of the formation of pyridoxol phos-
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Figure 1. Partial HMBC spectra of (A) unlabeled authentic pyridoxine
triacetate and (BJ}€O-labeled pyridoxine triacetaté&sd) derived from
[3,4-180,]dXP (34). The spectra were acquired on a Bruker AM 400
spectrometer at 100.61 MH23C) and 400.13 MHz{).

spectrum, which showed the expecté@-induced upfield shift§
of 0.019 and 0.021 ppm for the C-3 and G3€ NMR signals,
respectively.

HTP (1) and [3,480,]dXP (3a) were incubated with purified
recombinant PdxA and Pdkih the presence of NADin 0.1 M
Tris/HCI, pH 7.5, with 30% RO (Scheme 2A). The formation
of inorganic phosphate was monitored 8% NMR during the
course of the reaction. Only unlabelegw®s observed, with no
evidence for formation of any§O]P, as indicated by the absence
of isotopically shiftec?*P NMR signals'! This observation ruled
out our earlier suggestiéthat phosphate is eliminated following
migration of the phosphoryl moiety from the C-5 to the C-4
hydroxyl of dXP or in any derived intermediate. To determine
the actual distribution offO label in the resulting pyridoxol'5s
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Figure 2. Partial proton-decoupled®C NMR spectrum of [4180]-
pyridoxine triacetate5b) (0.4 Hz/data point).
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30% 80 at the 4-oxygen atom, based on the observation of a

phosphate, the purified product was treated with acid phosphatase*C—*%0 signal shifted 0.022 ppm upfield of the Cgignal at
and was then acetylated by reaction with acetic anhydride in 56.838 ppm due to the natural abundak&-"°0 species. The

pyridine. Both the chemical ionization (CI) and electrospray

observedC NMR, GC-MS, and ESMS data for the enzymati-

ionization (ESI) mass spectra of the resulting pyridoxine triacetate cally derived [4-'¥O]pyridoxine triacetat&b were identical with

(5a) established the presence of a singl® atom. In the*C
NMR spectrum o6a, no isotopically shifted peaks were evident
for either C-4 or C-5. The signal for C-3, which is a quaternary

those of a reference sample of-[40]pyridoxine triacetate that
had been prepared by incubation of pyridoxal ¥#0]JH,O (30
atom %) at room temperature for 30 min to effect exchange of

carbon sandwiched between two other quaternary carbon atomsthe carbonyl oxygen atom, followed by room-temperature reduc-

was too weak to be detected. Instead, the samplBaoivas
analyzed by heteronuclear multiple bond correlation (HMBC)
using a 5.0 ppn¥C sweep width centered on the signal for C-3
at 145 ppm and inverse detection via the Hpfoton signal
(Figure 1), clearly revealing a cross-peak between dpdl C-3

for the 180—13C-labeled species, thereby confirming the retention
at C-3 of pyridoxol phosphate of tH€O from the [3,4180,]dXP
precursor.

We next incubated dXP and HTP with HTP dehydrogenase
and pyridoxol phosphate synthase ifJ]water (30 atom %°0)
(Scheme 2B). The resulting pyridoxol phosphdite) (vas isolated
by an AG 1 x 8 anion exchange column, and converted to
pyridoxine triacetate5b). The ESI mass spectrum 6b showed
a pair of molecular ion (MH) peaks atv/z296.3 and 298.3 with
an intensity ratio of 7:3, corresponding to t#® content of the

tion with NaBH, at pH 7-8, and treatment of the resulting
[4'-*80]pyridoxol with acetic anhydride in pyridine. These results
establish that the'4DH oxygen atom of pyridoxol 'Sphosphate
originates from water and that elimination of the phosphate group
derived from C-5 of dXP takes place by-©, distinct from P-O,
bond cleavage.

The mechanism shown in Scheme 3 is consistent with the
180-labeling results. According to this proposal, the phosphate
is cleaved from the hypothetical enzyme-bound intermediate,
pyridoxol 4,5-diphosphate 1), by an elimination-addition
sequence, taking advantage of the enol-like hydroxyl at C-3. The
results can be rationalized equally well by the mechanism
suggested by Labérin which the phosphate eliminatietwater
addition sequence takes place at a stae pfeceding ring
formation. Experiments are in progress to determine the precise

labeled water and indicating the presence of one water-derivedtiming of the removal of the phosphate group in the pyridoxol

oxygen atom in pyridoxol phosphath. The 3C NMR spec-
trum (Figure 2) of the triacetatgb confirmed the presence of
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phosphate synthase reaction.
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